

FLX-0139-02-COA

Certified Reference Material

FLX-139

Alumina Refractory New certificate issued January 2021

Certified Values

Parameter	Mass fraction in % ¹⁾	Uncertainty in % ²⁾	Traceable to
Al ₂ O ₃	96.28	0.41	SI unit kg/kg
CaO	0.479	0.025	SI unit kg/kg
Cr_2O_3	0.362	0.012	SI unit kg/kg
Fe ₂ O ₃	0.119	0.039	SI unit kg/kg
HfO ₂	0.011	0.006	SI unit kg/kg
La_2O_3	0.334	0.011	SI unit kg/kg
MgO	0.243	0.035	SI unit kg/kg
Na ₂ O	0.140	0.020	SI unit kg/kg
SiO ₂	0.613	0.018	SI unit kg/kg
SrO	0.176	0.018	SI unit kg/kg
TiO ₂	0.043	0.017	NCS DC 14226
Y ₂ O ₃	0.085	0.002	SI unit kg/kg
ZrO ₂	0.581	0.018	SI unit kg/kg

Table1) Certified Values

1) Certified value traceable to SI unit kg/kg based on ignited sample material for 1h at 1025°C.

2) Expanded uncertainty *U*_{CRM} calculated for a confidence interval of 95% (k=2) based on uncertainty of characterization.

The sum of all oxides is 99.745. This excludes LOI.

This certificate is valid, within the uncertainty specified, **until 12.10.2030**, provided the CRM is handled in accordance with instructions given in this certificate. The certification is nullified if the CRM is damaged, contaminated, or otherwise modified.

Bedburg-Hau, **12.01.2021**

Responsible Reference Materials Susan Aschenbrenner General Manager Dr. Rainer Schramm

Tel: +49 2821 48011-10/ Fax: +49 2821 48011-99, e-mail: info@fluxana.com, web: www.fluxana.com, FLUXANA® GmbH & Co. KG, Borschelstr.3, 47551 Bedburg-Hau Germany, GM Dr. R. Schramm, reg.in Kleve HRA 2935, personal liability FLUXANA Verwaltungs-GmbH Bedburg-Hau, reg.in Kleve HRB 8211, FLUXANA® registered trademark

FLX-0139-02-COA

Description of the CRM

This reference material is an industrial product. The complete batch was sealed into 50 ml bottles.

Intended use

Calibration and control sample for x-ray fluorescence (XRF) analysis.

Informational Values

	Mass Fraction in % ³⁾	Uncertainty ⁴⁾
K ₂ O	0.277	0.047
LOI	2.14	-

Table2) Informational Values

3) Only Informational Value.

4) Expanded uncertainty *U*_{CRM} calculated for a confidence interval of 95% (k=2) based on uncertainty of characterization, if present.

Instructions for the correct use of the CRM

This material is moisture sensitive. This material has to be ignited for minimum 1 hour at 1025°C prior use. The ignition process must result in a constant weight. The ignited material must be stored in a desiccator not longer than 24h, then reignition might be necessary. The minimum sample quantity for analysis should be 0.5g.

For XRF use, ignited samples should be prepared as a fused bead, e.g. in accordance with DIN EN ISO 12677:2013-02.

Storage Information

The material has to be stored in a dry and clean environment.

Hazardous situation

For this material an actual MSDS is available.

Level of homogeneity

In accordance with ISO Guide 35:2017 a homogeneity study was performed. A one-way ANOVA was used to calculate the batch inhomogeneity.

FLX-0139-02-COA

3/3

Stability

In accordance with ISO Guide 35:2017 a stability study was performed. As a result, the stability of the material was considered as fit for purpose. The uncertainty of long-term stability was calculated.

Total expanded uncertainty

The total expanded uncertainty U_{CRM} for a confidence interval of 95% (k=2) was calculated by taking into account the uncertainty of characterization u_{char} , of inhomogeneity u_{bb} and of long-term stability u_{lts} .

 $U_{CRM} = \mathbf{k} \times \sqrt{u_{char}^2 + u_{bb}^2 + u_{lts}^2}$

Traceability

All of the results derived as part of this testing program have traceability to the SI unit kg/kg or NCS DC 14226.

Methods used

The analytical work performed to assess this material was carried out by the FLUXANA laboratory, which works under DIN EN ISO/IEC 17025:2018 accreditation.

In accordance with DIN EN ISO 17034:2017 and ISO Guide 35:2017, we use the approach stated in DIN EN ISO 17034:2017 Chapter 7.12.3. d) value transfer from an RM to a closely matched candidate RM performed using a single measurement procedure performed by one laboratory.

An example for this approach is found in DIN ISO 13528:2015 E.5. Using this approach, samples of the test material that is to be the new reference material are tested along with matching and/or synthetic RMs using a suitable method. The assigned values X_{CRM} and their uncertainties U_{CRM} are then derived from a calibration against the certified reference values of the compared RMs. Synthetic RMs are made from pure chemicals by weighing.

Measurement method used: XRF with fusion as sample preparation technique.

This certificate is in conformance with ISO Guide 31:2015.